
Deadline-aware Multipath Transmission for
Streaming Blocks

Xutong Zuo∗, Yong Cui∗§, Xin Wang†, Jiayu Yang‡
∗Tsinghua University, China

†State University of New York at Stony Brook, USA
‡Beijing University of Posts and Telecommunications, China

Abstract—Interactive applications have deadline requirements,
e.g. video conferencing and online gaming. Compared with a
single path, which may be less stable or bandwidth insufficient,
using multiple network paths simultaneously (e.g., WiFi and
cellular network) can leverage the ability of multiple paths to
service for the deadline. However, existing multipath schedulers
usually ignore the deadline and the influence from subsequent
blocks to the current scheduling decision when multiple blocks
exist at the sender. In this paper, we propose DAMS, a Deadline-
Aware Multipath Scheduler aiming to deliver more blocks with
heterogeneous attributes before their deadlines. DAMS carefully
schedules the sending order of blocks and balances its allocation
on multiple paths to reduce the waste of bandwidth resources
with the consideration of the block’s deadline. We implement
DAMS with the inspiration of MPQUIC in user space. The
extensive experimental results show that DAMS brings 41%-63%
performance improvement on average compared with existing
multipath solutions.

I. INTRODUCTION

Applications often put many requirements on the services

from network transmissions. Among the requests, end-to-end

delay is most concerned by interactive applications, such as

video conferencing and online gaming, which usually expect

the data to arrive within a certain time limit, i.e., a deadline.

For instance, in a video conference, the end-to-end delay is

supposed to be about 100ms or even lower to provide users

with interactive experience [1]. In recent years, teleconference

has become an essential tool to support normal business

operations, and there is also a large increase of online gaming.

It is critical to well support low-delay interactive applications.

The data from streaming applications are often transmitted

in blocks. Data block is defined as the minimal unit of data

by applications. For example, frames in video streaming and

messages in online gaming can be treated as blocks. For block-

based data transmission, the order in which data arrives within

a block is unimportant, as long as all data of a certain block

reach the receiver before the block’s deadline. The blocks that

miss the deadline will greatly affect the user’s QoE, and may

become useless when new data arrive.

Previous work of deadline-aware transmissions on a single

path [2], [3] attempts to deliver data blocks before application-

specified deadlines. However, a single path can not always pro-

vide stable network connections or sufficient throughput [4],

§Yong Cui is the corresponding author.

[5]. Compared with a single path, multipath transmissions

have the advantage of providing seamless handover and larger

aggregated bandwidth, which show their potential in dealing

with deadline-aware transmissions. Besides, many applications

now support multipath solutions [6], [7]. For multipath trans-

mission, a scheduler is often used to determine which path the

data should be transmitted along, and is the key component

that impacts the performance. Various multipath schedulers

are proposed for different scenarios [8]–[11] and optimization

objectives [12]–[15].
However, existing multipath schedulers can not well handle

deadline requirements for streaming blocks as they often

ignore deadlines and the interactions among blocks (§ II).

MinRTT [16], Round-robin (RR) and ECF [17] are not aware

of the block boundary and deadline requirements. If the one-

way delay of the large RTT path is greater than the deadline

of a block, the block will miss the deadline. Although block

boundary is considered in DEMS [18], it only tries to minimize

the completion time of a single block, without considering the

interaction of blocks. DEMS achieves simultaneous subflow

completion from the receiver view, however, its bandwidth

allocation increases the bandwidth wastage. As a result, some

blocks meet their deadlines by sacrificing other blocks. MP-

DASH [4] tries to ensure a single block to meet the deadline,

but is difficult to handle the situation with concurrent blocks.

Existing algorithms proposed for concurrent streaming on

multipath are either based on SCTP [19] which is difficult

to deploy [20], or intend to optimize other metrics, such as

the average stream completion time (SRPT-ECF) [21], instead

of the deadline.
This paper aims to enable deadline-aware multipath delivery

for streaming blocks. Achieving this goal faces a number of

challenges. First, deadline-aware schedulers need to arrange

the sending order of blocks which may have heterogeneous

and contradictory attributes, e.g. deadline, priority and size.

Second, subsequent unknown blocks affect the current multi-

path bandwidth allocation. Third, contradiction exists between

the precise deadline and the inaccurate network information.

The key contribution of this paper is the design, implementa-

tion and evaluation of Deadline-Aware Multipath Scheduler

(DAMS) for transmission of streaming blocks. DAMS ad-

dresses the above challenges as follows:

• To deliver streaming blocks within application-specific



Fig. 1. Simultaneous subflow completion of chunk i which achieves the
minimum completion time. Block transmission time is calculated as the ratio
of block size to bandwidth. With no preemption, the completion time of a
block includes two parts: block transmission time and one-way delay (OWD).
Block i starts sending at t1 and completes at t2.

deadlines in the multipath scenario, DAMS considers the

deadline as an important metric to handle the sending

order of blocks with heterogeneous attributes. During the

scheduling, DAMS detects the blocks’ deadline satisfac-

tion with network capacity instead of by estimating the

transmission time, which decouples the specific multipath

allocation strategies from the decision of block sending

order (§ III-A – III-B).

• Future blocks and network changes cause the transmis-

sion of the current block to be preempted which lead

to bandwidth waste. The multipath allocation strategy

of DAMS is to complete the sending simultaneously on

multiple paths for each block to reduce the impact of

preemption and achieve high performance (§ III-C–III-D).

We implement DAMS in user space based on QUIC [22]

for simplicity with the inspirations of DTP [2] and MPQUIC

[13] (§ IV). We conducted extensive evaluations in stable and

dynamic networks. Our evaluation results show that DAMS

achieves the best QoE metrics compared with other multipath

schedulers. Additionally, our results demonstrate that DAMS

can increase the completion rate of high priority blocks up

to 48% and the completion rate of all blocks up to 71% for

different applications under various network conditions (§ V).

II. MOTIVATION

For many delay-sensitive applications, data are transmitted

in the unit of block with its deadline. The data blocks may

have different impacts on the user-perceived QoE. The blocks

that show significant influence on QoE are considered to be

important with a high priority, such as I frames and tiles

that the user’s eyes focus on in a 360° video [23]. Multiple

blocks may be sent simultaneously. A natural question is

how to leverage multipath resources and blocks’ attributes so

that more blocks can meet their deadlines. Before proposing

a solution, we investigate the reasons for the performance

degradation caused by previous multipath schedulers.

For deadline-aware multipath scheduling, one major cause

of performance degradation is that existing scheduling

schemes waste the bandwidth. For deadline-oriented transmis-

sion, if data arrive after the deadline, the used bandwidth is

also considered to be wasted. We find that previous multipath

schedulers are unsuitable for deadline-aware transmissions,

because they do not consider multiple blocks in the deadline

scenario, leading to bandwidth waste. Next, we analyze the

reasons with examples.

Fig. 2. The timeline of multiple blocks sent in the arranged order. The
multipath allocation strategy is simultaneously subflow completion (A multi-
block version of Figure 1). Above and below the dotted line are bandwidth
allocations for the first and second paths, respectively. Multiple blocks are
shown with different colors.

Existing data sending order does not take into account
the heterogeneous attributes of multiple blocks. When mul-

tiple blocks with different attributes (e.g., deadline, priority,

and size) exist at the sender, FIFO sending order of blocks

is inadequate. An intuitive example is that, if a block misses

its deadline before the transmission completes, the remaining

data of that block becomes useless even if transmitted to the

receiver. In this circumstance, it is a better choice to delay or

cancel the sending of this block and make way for subsequent

data transmission to avoid wasting the bandwidth.

What’s more, simply considering these attributes may still

cause unexpected results. For example, if only priority is

considered and a high priority block (chunk A) far away

from its deadline is sent first, a low priority block (chunk B)

close to its deadline may miss the deadline and get canceled.

Only considering the block size leads to the same problem.

Considering the deadline is not enough either, because whether

a block can be completed is related to not only the deadline,

but also the block transmission time, propagation time, etc.

Choosing a block whose deadline is close but may not be

completed before the deadline is not reasonable.

These examples and analysis indicate that simply consider-

ing attributes of blocks is not suitable for deadline-aware trans-

mission of streaming blocks, let alone FIFO which ignores the

attributes. Besides, due to the existence of the deadline, the

time that each block can use the bandwidth is constrained, and

bandwidth allocation needs to be well designed. Consequently,

a better block sending order which considers the deadline and

other heterogeneous attributes of blocks is needed, with the

aim of increasing the block completion rate and reducing the

waste of bandwidth resources.

Mismatch exists between current multipath allocation
strategies for a single block and the deadline target. For a

single block, the minimum block completion time is attained

by simultaneous subflow completion multipath strategy [18],

[21] (shown in Figure 1). Even so, we find that when faced

with transmission streaming blocks, such a scheme would

cause frequent preemption, which may lead to potential band-

width waste.

With this strategy, the multipath allocation of each block

aims at minimizing the block completion time. When multiple

blocks exist at the sender (e.g. n blocks), the bandwidth

occupancy of these n blocks is shown in Figure 2. For the first



n− 1 blocks, following the simultaneous subflow completion

strategy, two paths often transmit different blocks at the same

time. If there is a preemption (e.g., at the time t1), more than

one block may be affected, and multiple preempted blocks

may all miss their deadlines to cause a big waste of bandwidth.

What’s more, the larger the difference of the one-way delay

between the two paths, the greater the difference of the block

transmission time on different paths for each block. As a

result, the bandwidth waste mentioned above will occur more

frequently.

As for the nth block, that is, the last block scheduled to be

sent in the current buffer, simultaneous subflow completion

leads to the potential bandwidth waste on the slow path. As

shown in Figure 2, after t′, block n only occupies the fast path,

and the slow path is idle without new blocks coming. However,

if the one-way delay of the slow path is less than the deadline

of block n, the slow path should have been used to speed

up the existing transmissions rather than being wasted (from

t′). It would also reduce the probability for the block n to be

preempted, as in the case that a new block arrives at t2. The

impact and performance degradation caused by preemption is

shown with the evaluation results in Section V-C.

As a result, simultaneous subflow completion increases the

possibility of bandwidth resource competition due to unreason-

able bandwidth allocation schemes. Therefore, to improve the

completion rate of blocks and better support deadline-aware

transmissions, it calls for the design of an efficient multipath

scheduler to reduce the bandwidth waste and competition.

III. DEADLINE-AWARE MULTIPATH SCHEDULER

We propose DAMS, a deadline-aware multipath scheduler

aiming to deliver more blocks with heterogeneous attributes

before their deadlines. The key design decisions of DAMS

include the following: (1) DAMS is aware of the blocks’

deadlines (III-A); (2) To handle heterogeneous attributes of

blocks, DAMS strategically decides the sending order of

blocks with a variant of Earliest Deadline First (EDF) al-

gorithm (III-B); (3) To deal with unknown application data

pattern, for practical use, DAMS makes the online adaptation

for multipath bandwidth allocation (III-C); (4) To deal with

unknown network status, Robust DAMS (III-D) is designed

where a safeguard is set to adjust the deadlines of blocks for

scheduling. Next, we elaborate them in this section.

A. Overview for deadline-aware block transmission

DAMS aims to achieve block-based transmission with dead-

line. Each block has attributes such as deadline, priority and

size. For blocks, the deadline determines how long a block can

occupy bandwidth, the priority indicates the impact of a block

on the user QoE, and the size determines the transmission time

of a block. What DAMS concerns is the completion time of

blocks, which affects the user experience.

Section II shows that FIFO is not the best sending order

of blocks for deadline-aware transmission. Other schemes

that consider only one of the attributes cannot provide a

reasonable sending order. Under this circumstance, DAMS

aims to strategically decide the sending order of blocks with

different properties taken into account.

When faced with the deadline-aware scheduling, a straight-

forward solution is the Earliest Deadline First algorithm (EDF)

[24] used for processor scheduling in a real-time system. How-

ever, most research focuses on the problem of homogeneous

multi-resources [25]–[27] or uniform heterogeneous multi-

resources [28]–[30]. It is different from our scenario, and the

solution cannot be directly applied. Specifically, vanilla EDF

algorithms are not suitable for the following reasons:

• Different from heterogeneous processor resources, mul-

tipath resources are not only different in bandwidth but

also latency which is an important factor affecting the

scheduling.

• In most cases, network is overloaded with limited re-

sources, and no schedule can meet the deadlines of all

blocks. At this point, we focus on how to meet the

deadlines of more blocks. However, most studies on this

aspect in real-time scheduling cannot be directly applied.

To solve the above problems, we first propose an offline

EDF-based algorithm that considers heterogeneous attributes

to give a block sending order when the global information

is known, and then make adaptations for practice use. The

workflow of DAMS is shown in Figure 3. DAMS takes

block attributes and network status as input, and decides the

block sending order and the distribution of the block data on

multipath with the consideration of deadline. Blocks’ attributes

are notified to the transport layer which is implemented as

Section IV shows. Network status includes bandwidth and

RTT. We estimate the bandwidth by calculating the ratio of

congestion window and RTT. One-way delay is estimated with

RTT/2. However, this estimation may contain flaws, as the

delay of an Internet path can be asymmetric [31], [32] and the

lagged nature of RTT still impacts the perception of DAMS

for network delay, thus the scheduling to make.

B. Offline scheduling

In this section, we propose the offline DAMS when the

information of network condition and all blocks are given. The

scheduling is still challenging even with these information, as

multiple heterogeneous attributes of blocks which conflict each

other and should be handled. Next, we propose an EDF-based

scheduling algorithm and show the design details as follows.

DAMS performs order arrangement (in Figure 3) and sorts

all blocks according to their deadlines. If there is a resource al-

location scheme so that all blocks in the sender buffer can meet

the deadline, the optimal solution can be obtained by EDF.

However, network resources are usually insufficient and not all

blocks can meet their deadlines. In this circumstance, DAMS

performs selective preservation which selectively delays or

cancels the sending of some blocks that are sorted according to

the deadline. Given a block of size s, its percentage of unsent

data is denoted as r. If the block arrives before its deadline,

the credit c is obtained. The credit c is positively correlated

with the priority p. DAMS selectively preserves some blocks.

Specifically, DAMS performs a block-by-block comparison of



Fig. 3. Workflow of DAMS algorithm.

all blocks. If the deadline of the comparison blocks can be

met with current network conditions, the comparison blocks

will not be delayed or cancelled. If not, delaying the sending

of blocks with the smallest normalized credit d = c
s∗r , where

a larger d means a higher credit for transmitting the same

amount of data. Once time exceeds the deadline of a block, it

will be cancelled and will no longer participate in scheduling

afterwards. This helps reduce the bandwidth waste caused by

sending useless data. Meanwhile, the queuing delay of other

blocks can be reduced.

If all blocks have the same priority, DAMS selects the small-

est block when scheduling and achieves the optimal solution.

However, when considering different priority, tradeoff exists

between the priority and block size, and the optimal solution

can only be found by traversing all situations. In this circum-

stance, DAMS performs selective preservation according to

the normalized credit d.

In the offline phase, the multipath scheduling scheme only

needs to satisfy that the blocks which are not delayed or

cancelled are completed before their deadlines. A natural

question arises: how to detect that the deadline of a block

can be met. A direct method is to estimate the completion

time of the block and compare it with its deadline. However,

the completion time of the block is related to the multipath

allocation of that block, and is affected by the scheduling of

other blocks as well. The existence of the coupling relationship

makes the problem complicated. Notably, we find that the

available network capacity before the deadline for each block

can be used to detect whether the block can meet the deadline

or not. If the deadline can be met, any specific allocation

across multipath which satisfies the deadline can be used.

Consequently, detecting the deadline satisfaction is decoupled

from multipath allocation and is performed according to the

network capacity.

Specifically, the detailed calculation of network capacity

that a block can use is shown as follows. The attributes of

heterogeneous paths need to be considered, including band-

width and RTT. The maximum network capacity that block i
can use on path j is:

Ci =
∑

j

(Di −Ai −RTTj/2)×BWj (1)

where Di and Ai represent the deadline and arrival time of

block i respectively. Besides, the RTTj and BWj represent the

Fig. 4. Finish sending simultaneously. Transmission timeline of a block in
DAMS. The block starts sending at t1 and completes at t2.

RTT and bandwidth of path j. However, due to the insufficient

network bandwidth, block i may be queued at the sender

and waits for other blocks to be sent. As a consequence, the

available network capacity for block i is reduced to Ci−Cused

where Cused represents the capacity that is used by other

blocks sent before block i.

C. Online adaptation for multipath bandwidth allocation

When online, unlike the offline phase, only the information

of the blocks in the sending buffer and the current network

status can be known. The challenge arises when considering

multipath scheduling for a block, as the impact of unknown

subsequent blocks on the current decision should be taken

into account. New blocks and network condition changes may

lead to preemption of current blocks. Therefore, multipath

allocation should be carefully designed for online scheduling.

From the previous block-based solution DEMS [18], we

know that simultaneous subflow completion generates the

minimum completion time of a block. In this case, the block

has the highest slack and presents high tolerance for network

jitter. However, as Figure 2 shows, in the circumstance of

simultaneous subflow completion, multiple paths usually trans-

mit different blocks at the same time. Consequently, when a

new block comes, more than one block is preempted, resulting

in an increase in bandwidth waste. The greater the delay

difference between different paths, the worse the situation.

In order to reduce the bandwidth waste, when each block

is sent, the path allocation strategy of DAMS is to finish the

sending simultaneously on multiple paths. By doing so, the

same block is ideally sent on multiple paths at the same time,

so at most one block will be affected when a preemption

occurs. The transmission timeline of a block is shown in

Figure 4. If the capacity is enough for all blocks which are not

delayed or cancelled, there exist multiple allocation schemes

that can meet the deadline of blocks. Among them, finishing

the sending on multiple paths simultaneously for each block

achieves the optimal multipath allocation strategy with the

minimum bandwidth waste.

Finishing the sending simultaneously makes the completion

time of the block on multiple subflows different, and the path

with a large one-way delay completes transmission later. If

even the smallest completion time of multiple paths exceeds

the deadline, the block is expected to miss its deadline. A

special case may occur that the largest completion time of

multiple paths exceeds the deadline while the smallest one

not. If this happens, we adjust the allocation by moving the

part of the data beyond the deadline to the path with smaller



one-way delay. Furthermore, compared with the simultaneous

subflow completion, this allocation method has a lower ability

to handle the network fluctuation on a large RTT path. So in

a dynamic network, we take an extra operation to deal with

the network fluctuation (Section III-D).

The overall operating logic and complexity analysis of

DAMS are as follows. When a new block comes, DAMS

inserts it into the queue according to its deadline, and then

executes the above selective preservation procedure. For each

block, DAMS tries to finish its sending simultaneously on

multiple paths. The algorithm complexity is O(k), where k
is the number of blocks whose deadlines are behind the new

block in the original buffer. When a new block comes or

network condition changes, the blocks in the sending buffer

are rescheduled. To prevent the scheduling overhead from

increasing indefinitely as the number of blocks increases, in

practice use, only the front part of the block can participate

in scheduling to achieve a trade-off between algorithm per-

formance and overhead. Notably, the design of DAMS is not

targeted specifically for two paths, thus DAMS can be applied

directly to scenarios with more than two paths, which shows

its flexibility and scalability.

D. Deadline adjustment for network dynamics

The DAMS scheduling algorithm shown above considers the

bandwidth and RTT provided by congestion control module as

accurate network conditions. However, in a dynamic network,

it is impossible to provide accurate predictions to the schedul-

ing algorithm. When the network condition changes, the sent

data which scheduled with previous network conditions may

miss their deadline, resulting in the bandwidth wastage.

To handle varying network, we enhance the robustness of

DAMS with the adjusted deadline as input. First, RTT is

estimated at the sender with exponential weighted moving

average (EWMA). Then, in order to avoid the situation that

blocks that could be completed before the deadline miss it due

to the smaller throughput or larger RTT afterwards, we add a

safeguard for the deadline and get Deadline:

Deadline = Deadline− α ∗ std dev/2 (2)

where std dev varies with time, representing the standard de-

viation of RTT collected in the past period of time. std dev/2
is used as the variation of one-way delay. We multiply std dev
by a coefficient α to adjust for the conservative level and

Deadline is used as the input of scheduling. By adding the

safeguard, Robust DAMS becomes more conservative because

it use a smaller deadline and the blocks near the deadline will

be delayed or cancelled. Doing so increases the probability

that sent blocks complete before the deadline, and thereby

reduces the waste of bandwidth resources caused by sending

useless overdue blocks. When the network bandwidth and

RTT stay stable, std dev is small, then the performance of

the robust DAMS algorithm is similar to that of the DAMS

algorithm mentioned above. However if the network fluctuates

significantly, the robust DAMS algorithm improves the block

completion rate before the deadline.

IV. IMPLEMENTATION

The implementation of DAMS puts requirements for the

underlying protocol stack. First, it should be able to mark the

block boundary and be aware of the deadline corresponding

to each block in the data stream. Second, it is supposed to

support unreliable or partial reliable transmission to enable

block cancellation in DAMS. These requirements make it a

great effort to implement DAMS in MPTCP, though it is

possible, and we leave it for future work. Owing to many

useful building blocks in QUIC, DAMS is implemented based

on MPQUIC without much effort. Next, we show our primary

extensions of QUIC and MPQUIC.

To be able to cancel blocks that miss the deadline, we map

a block to a stream of QUIC, so we take advantage of the

existing stream cancellation process of QUIC to cancel blocks

without influencing transmission of other blocks. QUIC stream

ID is encoded using variable-length integers of which the max

value is 262− 1, so it is enough to represent all blocks during

one session. Once DAMS decides to cancel a block, it calls

the function cancel block implemented in our system, and the

sender will remove it from the sender buffer. Meanwhile, a

RESET STREAM of QUIC is sent to inform the receiver that

the block is canceled. Mapping a block to a stream of QUIC

also enables prioritizing some blocks over others.

In MPQUIC, data retransmissions do not have to follow the

original path. This property allows us to schedule retransmitted

data like other blocks without need of special treatment. In our

implementation, the retransmitted data are treated as a part of

the original block and participate in multipath scheduling. If

the retransmitted data miss the block deadline, we can also

cancel the sending like other blocks. Consequently, not all

lost packets will be retransmitted.

For DAMS, the scheduling performed on the packet level

means high overhead. Next, we present the conditions for

triggering the scheduler on the block level to lower the

scheduling overhead. First, if the network conditions of the

two paths do not change, the sending order of blocks and

the allocation remain the same. So the scheduling is triggered

when this module perceives network changes. Second, when

new blocks come to the sender buffer, preemption may occur

so scheduling should be triggered.

We use the basic implementation on Cloudflare’s quiche

of the version 23 of QUIC draft [33]. We extend it with

inspirations from DTP [2], [3] and MPQUIC [13]. Our im-

plementation is written in Rust and the example application

is written in C. The overall implementation is lightweight.

With DAMS, we achieve deadline-aware transmission at the

transport layer, facilitating the application developer by provid-

ing only an additional deadline parameter. Application proxy

can be used to avoid modifying the applications. Besides, the

deadline setting is configurable and application-related.

V. EVALUATION

In this section, we conduct experiments on two Linux

machines running Ubuntu 20.04. One serves as the sender with

scheduling algorithm deployed on it and the other serves as the



receiver. They are connected with an OpenWrt router where

Linux tc [34] runs to provide different network conditions.

To create two transmissions, two network interface cards are

installed on each machine.

A. Experiment Setup

Application traces. We evaluate DAMS with two applica-

tion traces on top of our system.

• Live video streaming (Advanced Video Coding, AVC).

We run our video streaming emulator with the “AirShow”

video from the LIVE video set [35]. We encode the trace

to the bitrate of 4.3Mbps and parse them to the frame

level with FFmpeg to simulate low-latency live streams.

Each frame is treated as a block. The parsed video has

three types of frames: I, P, and B with high, medium, and

low priority respectively. The frame rate is 30FPS.

• Video conference (Scalable Video Coding, SVC). We use

the “Chimera1102347” video from the LIVE video set

[35]. Video conference applications adopt scalable video

coding, where videos are encoded into base layer and

enhancement layers, which are treated as blocks with

different priorities. The highest bitrate of SVC video is

4.3Mbps. The original video is 30FPS.

Comparison algorithms. In our evaluation, we compare

DAMS’s performance to that of the following five comparision

algorithms.

• MinRTT [12]: sends packets through the available paths

with the smallest RTT.

• RR: sends packets in a round-robin fashion.

• SRPT-ECF [21]: selects the smallest stream and for each

stream it tries to minimize overall completion time.

• DEMS [18]: block-based multipath scheduler. For each

block, it tries to achieve simultaneous subflow completion

from the receiver’s view.

• DAMS-C: block-based multipath scheduler, a variant of

DAMS, with our designed block sending order. For mul-

tipath scheduling, it tries to achieve simultaneous subflow

completion from the receiver-side view.

We present the overall performance of DAMS comparing

with existing comparison algorithms of the two applications

motioned above in Section V-B. In addition, to provide a

deeper understanding of DAMS, we describe microbench-

marks where DAMS are compared with two algorithms:

DEMS (the representative of existing block-based algorithms)

and DAMS-C (the variant of DAMS). For fair comparision,

we implemented all the comparision algorithms in our system,

so that they share the same underlying mechanism.

Performance metrics. We present the evaluation using

metrics of application layer and transport layer. We evaluate

DAMS and other comparison algorithms with the same source

video and network trace, and present the block completion rate
of all blocks and high-priority blocks as metrics of the trans-

port layer. Besides, we calculate the average bitrate and re-
buffering time at the application layer. Notably, in the deadline

scenario, only blocks that arrive before the deadline are valid

(a) Average Bitrate. (b) Rebuffering Time.

Fig. 5. QoE of applications.

and counted. Specifically, the average bitrate is calculated as

data volume/video len where data volume represents the

amount of data belonging to the blocks that arrived before the

deadline and video len represents the length of the video. The

rebuffering time is calculated as frame num/frame rate
where frame num is the number of frames that missed the

deadline. It comes from the fact that every frame missing the

deadline introduces 1/frame rate rebuffering time.

B. Overall performance

We now present the overall performance of DAMS when

comparing with existing multipath algorithms: RR, MinRTT,

SRPT-ECF and DEMS in Figure 5 and Figure 6. We use real

network traces randomly selected from the HSDPA dataset

[36] to simulate dynamic network conditions. The average

bandwidth of the two paths are 1.50Mbps and 2.36Mbps

respectively. The aggregated bandwidth is lower than the

average bitrate of the application trace. The minimum RTT

of the two paths are set to 10ms and 40ms respectively. The

deadline of blocks is 200ms.

Figure 5 shows the QoE of two applications. In the deadline

scenario, DAMS performs the best when comparing with

other existing algorithms. DAMS achieves the highest average

bitrate which proceeds 2.5Mbps. Besides, DAMS achieves

the lowest rebuffering time for both applications which is

48.39% of the best performing comparison algorithm SRPT-

ECF. MinRTT, RR and DEMS are not aware of deadline, and

the data sent by the sender is FIFO. As a result, with the

limited bandwidth, most blocks cannot meet the deadline due

to long queuing delay at the sender, which leads to low average

bitrate and long rebuffering time. We revisit the question of

long queuing delay in Section V-C. SRPT-ECF performs better

than the above three algorithms because it prioritizes sending

blocks with small size. However, its block preemption only

considers the size without considering the priority and the

amount of sent data in the current block. This makes SRPT-

ECF perform worse in the live video streaming application

than in video conference, because the data block size in our

video conference trace is smaller than another application. To

further explain it, we then give detailed analysis with the data

pattern of the two applications and the block completion rate

metric which is shown in Figure 6.



(a) Video streaming. (b) Video conference.

Fig. 6. Block completion rate of applications.

Application data patterns of these two applications are

different. Specifically, in AVC, the highest priority block has

the largest size (I frame), and in SVC the highest priority

block has the smallest size (base layer). As Figure 6 shows,

for video conference, the completion rate of high-priority

blocks is higher than that of all blocks, while that of video

streaming is the opposite. The reason is that, more small and

high-priority blocks are completed before deadline in video

conference compared with low-priority blocks. Besides, SRPT-

ECF achieves comparable performance with DAMS in video

conference scenario as DAMS also preserves the blocks with

small size and high priority. More results showing the effect

of multipath allocation under different networks are presented

in Section V-C. For average bitrate, as shown in Figure 5(a),

the results is consistent with the trend for the completion

rate of all blocks in Figure 6. For rebuffering, since in a

video conference, once the base layer reaches the receiver,

this frame does not cause rebuffering. Therefore, there is less

rebuffering in video conference application than in AVC based

video streaming as Figure 5(b) shows.

C. DAMS deep dive

In order to better explore the influence of the multipath

allocation strategies on the results, we implement a variant of

DAMS and obtain DAMS-C. This scheduler is different from

DAMS only in multipath allocation, and it achieves simultane-

ous subflow completion which is the same as DEMS. Besides,

we choose DEMS as a representative of the existing algorithms

for comparison because it is a block-based algorithm and

the multipath allocation strategy is the same as DAMS-C.

Next, we evaluate the three algorithms of DEMS, DAMS, and

DAMS-C under stable network and dynamic network condi-

tions with different bandwidth and RTT combinations. For the

block-based algorithm, by comparing DEMS with the other

two algorithms, we present the role of block sending order

in our design. In addition to that, we evaluate the multipath

allocation strategy by comparing DAMS and DAMS-C. We

use live video streaming trace as an example application to

carry out subsequent experiments. The deadline of each block

is 200ms.

1) Stable Network Conditions: We consider different RTT

and bandwidth differences of two paths, and the network

(a) Block completion rate of high-
priority blocks.

(b) Block completion rate of all
blocks.

Fig. 7. Overall performance under different RTT combination.

settings follow the methodology of controlled experiments in

[4] and [18]. We measure the block completion rate of high

priority blocks and all blocks. We repeat each experiment 5

times and report the average value.

Different RTT combinations. We fix the first path’s RTT

to 10ms and vary RTT of the second path from 40ms to 200ms

with equal interval 40ms. The bandwidth of the two paths are

set to 2Mbps and 3Mbps.

Figure 7 shows that DAMS performs the best. DEMS

performs the worst and the aggregate bandwidth of DEMS

is limited, so almost no blocks can be completed before the

deadline. The limited aggregate bandwidth might be due to

the fact that DEMS sends the next block after the previous

one finishes sending on both paths instead of one of the

paths, which results in a waste of bandwidth on the large

RTT path even though it finishes the transmission earlier.

Compared with DAMS-C, DAMS achieves up to 29% and

32% higher completion rates for high-priority blocks and all

blocks respectively. In our video streaming trace, I frame

with the largest size is marked as the high priority blocks.

With the long block transmission time, the completion rate

of high priority blocks reduces rapidly as the RTT increase

(Figure 7(a)). Besides, as the delay difference of the two paths

increases, the performance difference between DAMS-C and

DAMS first increases and then decreases. The initial increase

is because the competition and preemption of the small RTT

path increase as the RTT difference becomes larger. If the RTT

of the second path is so large that the multipath allocations of

DAMS and DAMS-C tend to be consistent, the performance

difference becomes smaller. The completion rate of all blocks

in Figure 7(b) shows the same trend.

To understand where the performance improvement of dif-

ferent multipath strategy comes from, we compare DAMS

with DAMS-C and show the competition and preemption by

measuring the number of blocks which have ever sent data

but are eventually cancelled. These blocks reflect the degree

of competition and preemption, as otherwise a block will be

sent over without being preempted. Figure 9 shows that more

blocks are cancelled by DAMS-C than DAMS. The arrived

data belongs to the cancelled blocks also become useless.

The more the cancelled blocks which ever be sent, the more

bandwidth is wasted, resulting in lower block completion rate.

Different bandwidth combinations. To understand the



(a) Block completion rate of high-
priority blocks.

(b) Block completion rate of all
blocks.

Fig. 8. Overall performance under different bandwidth combination.

influence of two paths’ bandwidth, we evaluate the algorithms

under different bandwidth combination of two paths. We vary

the bandwidth of two paths and compare the block completion

ratio under 6 different bandwidth combinations. We set the

RTT of two paths to 10ms and 20ms separately. The random

loss rate to 0.01%.

Figure 8(a) shows the completion rate of high priority

blocks that arrive before deadline. The Y-axis is the completion

rate and the X-axis is the bandwidth combination pair of two

paths’ bandwidth: (3, 3.5), (2.5, 3), (2, 2.5), (1.5, 2), (1, 1.5),

(0.5, 1). The bandwidth of two paths decreases from the left

to the right on X-axis, so does the aggregated bandwidth.

Figure 8(a) shows that DAMS and DAMS-C which apply

the block sending order we designed perform better than

the DEMS which applies FIFO when dealing with multiple

blocks at the sender. This shows the effectiveness of selective

preservation when many blocks exist at the sender with limited

aggregate bandwidth. Moreover, the performance decrease of

schedulers is different. For DEMS, if the aggregate bandwidth

is limited, data are accumulated at the sender so that the

queuing delay increases and becomes the culprit for the

block not being completed. For DAMS and DAMS-C, the

long block transmission time becomes the limiting factor for

the improvement of the completion rate. Other bandwidth

combinations present similar performance to those with similar

aggregated bandwidth shown in Figure 8, so we omit them.

To reveal the performance gain brought by selective preser-

vation, we measure the queuing delay at the sender of blocks

that reach the receiver. Due to the existence of preemption,

the queuing delay also includes the time preempted by other

blocks in addition to the waiting time before starts sending.

The queuing delay on the first path is shown in Figure 10 (The

result is similar on the second path, so we omit the figure). We

can find that the queuing delay of algorithms with selective

preservation is lower than DEMS and keeps consistently low.

DEMS applies FIFO, so more and more blocks accumulate at

the sender due to limited bandwidth and the average queuing

delay increases. Selectively delaying or canceling the sending

of some blocks reduces the queuing delay and prevent the

accumulation of queue.

The completion rate of all blocks that arrive before the

deadline in Figure 8(b) shows the same trend as Figure 8(a).

When the aggregate bandwidth is sufficient, nearly all blocks

Fig. 9. Number of canceled blocks. Fig. 10. Queuing delay at the sender
on the first path.

(a) Block completion rate of all
blocks.

(b) High priority block completion
rate.

Fig. 11. Overall performance under dynamic network setting 1.

can arrive before the deadline. When the aggregate bandwidth

is limited, around the point (2Mbps, 2.5Mbps), we find that

the performance of DEMS degrades dramatically and nearly

no blocks can complete before the deadline. Overall, compared

with DEMS, DAMS achieves up to 48% and 71% increase in

the completion rates for high-priority blocks and all blocks

respectively. As Figure 8 shows, the performance difference

between DAMS-C and DAMS is minor as the RTT difference

of the two paths is small.

2) Dynamic Network Conditions: The algorithm to be com-

pared includes: DEMS, DAMS-C, DAMS and DAMS-Robust.

We set α as 1 empirically in DAMS-Robust and leave the work

about the effect of α on performance to the future. We vary the

bandwidth of two paths during one test. We evaluate in two

dynamic network setting with bandwidth of different average

and variance: 1) The first path’s bandwidth drops to 0.5Mbps

then restore to 2Mbps. The change takes 2s as a cycle, and

each bandwidth lasts for 1s. The second path’s bandwidth

has the same pattern which drops to 1Mbps then restore to

2.5Mbps; 2) The first path’s bandwidth drops to 0.5Mbps then

restore to 2.5Mbps and the second path’s bandwidth drops to

1Mbps then restore to 3Mbps. To investigate how the RTT

difference influence the performance under dynamic network

setting, we run under two RTT setting: 1) The minimum RTT

of the two paths are 10ms and 40ms; 2) The minimum RTT

of the two paths are 10ms and 80ms.

As Figure 11 and Figure 12 show, when the bandwidth

varies, DAMS-Robust performs the best when compared with

the other three algorithms. DEMS performs the worst as the

average bandwidth is limited compared with the video bitrate.

DAMS performs better than DAMS-C in most cases and the

opposite occurs under the dynamic network setting 2 with



(a) Block completion rate of all
blocks.

(b) High priority block completion
rate.

Fig. 12. Overall performance under dynamic network setting 2.

(a) Under dynamic network setting 1. (b) Under dynamic network setting 2.

Fig. 13. Block completion rate efficiency under dynamic network.

larger bandwidth variation and the RTT of two paths are

10ms and 40ms (left part of Figure 12(a)). Previous evaluation

results in V-C1 show that DAMS-C performs better under

small RTT difference than large RTT difference. Besides, as

mentioned in Section III-C, DAMS-C has the highest slack,

so it shows high tolerance for network variation. As a result,

DAMS-C performs better than DAMS in this situation.

We show the efficiency of block completion rate in Fig-

ure 13. We design DAMS-Robust to reduce the bandwidth

resource waste by reducing the overdue data arriving at

the receiver caused by the unknown network variation. The

efficiency here refers to the ratio of blocks arrive before

the deadline to all received blocks. As the Figure 13(a)

and Figure 13(b) show, DAMS-Robust exhibits greater or

nearly equal efficiency than DAMS. We can also find that the

efficiency of DAMS-C is high, however, the total completed

blocks of DAMS-C is lower than DAMS-Robust.

VI. DISCUSSION

Dependency effect. In this paper, we focus on the number

of blocks that meet the deadline. In Section V, we showed

that DAMS achieves the highest block completion rate under

various network conditions. A natural question is to extend

our design to multiple blocks with dependency among them as

dependency may exist in some applications. We can increase

the capability of DAMS and perform further processing to deal

with dependency of blocks. One direction is to simply cancel

the blocks which depend on the canceled blocks. However, the

cancelled blocks may increase a lot. More complex algorithm

to deal with dependency tree of blocks could be an option and

we leave this as future work.

Path extension. Our evaluations are all conducted with con-

sideration of two paths as it is a most common case today.

However, our design of DAMS, which achieves finishing

sending simultaneously can also be extend to more than two

paths without much additional design. If we need to move the

exceed data from the path which completes late to other paths,

we can only choose the other path in two paths’ condition. If

more paths exist, we can choose in order of RTT and prioritize

the way with the smallest RTT to put data that exceeds the

deadline. If this way cannot make these data meet the deadline,

we can choose the way with the second smallest RTT.

Loss awareness. Packet loss should be taken into account

when determining whether or not the block will meet the

deadline. If the packet loss rate is non-negligible and affects

the block completion time, forward error correction (FEC) is a

choice to improve the block completion rate, whose ratio can

be configured according to the packet loss rate. Under network

conditions with packet loss, the block completion time can be

estimated with the analysis of retransmission mechanism. The

estimated block completion time facilitates the scheduling of

blocks on the server to improve the block completion rate.

However, dealing with packet loss is not the focus of this

paper and we leave it as the future work.

VII. CONCLUSION

In this paper, we proposed DAMS, a deadline-aware multi-

path scheduler for streaming blocks aiming to meet the blocks

deadlines. DAMS is aware of the deadline and judiciously

handle the sending order of blocks with heterogeneous at-

tributes. Besides, DAMS finishes the sending on multiple paths

simultaneously for each block at the sender to reduce the sunk

cost of data block transmission and avoid bandwidth waste

brought by preemption of unknown blocks. Through exten-

sive evaluations, we found that DAMS outperforms existing

multipath schedulers by 41%-63% on average.

VIII. ACKNOWLEDGEMENT

This work was supported by National Key R&D Program of

China (No. 2018YFB1800303) and NSFC (No. 6213000078

and No. 61872211). Dr. Xin Wang’s work was supported by

NSF ECCS 2030063, OIA 2134840.

REFERENCES

[1] M. Baldi and Y. Ofek, “End-to-end delay analysis of videoconferencing
over packet-switched networks,” IEEE/ACM Transactions On Network-
ing, vol. 8, no. 4, pp. 479–492, 2000.

[2] H. Shi, Y. Cui, F. Qian, and Y. Hu, “Dtp: Deadline-aware transport pro-
tocol,” in Proceedings of the 3rd Asia-Pacific Workshop on Networking
2019, 2019, pp. 1–7.

[3] Y. Cui, Z. Liu, H. Shi, J. Zhang, and K. Zheng, “Deadline-aware
transport protocol. internet draft draft-shi-quic-dtp-02,” 2020. [Online].
Available: https://datatracker.ietf.org/doc/draft-shi-quic-dtp/

[4] B. Han, F. Qian, L. Ji, and V. Gopalakrishnan, “Mp-dash: Adaptive video
streaming over preference-aware multipath,” in Proceedings of the 12th
International on Conference on emerging Networking EXperiments and
Technologies, 2016, pp. 129–143.

[5] H. Shi, Y. Cui, X. Wang, Y. Hu, M. Dai, F. Wang, and K. Zheng,
“Stms: Improving mptcp throughput under heterogeneous networks,” in
2018 USENIX Annual Technical Conference (USENIX ATC 18), 2018,
pp. 719–730.



[6] “The first multipath tcp enabled smartphones.” 2018. [Online].
Available: http://blog.multipath-tcp.org/blog/html/2018/12/10/the first
multipath tcp enabled smartphones.html

[7] “Use multipath tcp to create backup connections for ios.” 2017.
[Online]. Available: https://support.apple.com/en-us/HT201373

[8] E. Dong, M. Xu, X. Fu, and Y. Cao, “A loss aware mptcp scheduler
for highly lossy networks,” Computer Networks, vol. 157, pp. 146–158,
2019.

[9] H. Lee, J. Flinn, and B. Tonshal, “Raven: Improving interactive latency
for the connected car,” in Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking, 2018, pp. 557–572.

[10] S. K. Saha, S. Aggarwal, R. Pathak, D. Koutsonikolas, and J. Widmer,
“Musher: An agile multipath-tcp scheduler for dual-band 802.11 ad/ac
wireless lans,” in The 25th Annual International Conference on Mobile
Computing and Networking, 2019, pp. 1–16.

[11] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang, “Fmtcp: A fountain
code-based multipath transmission control protocol,” IEEE/ACM Trans-
actions on Networking, vol. 23, no. 2, pp. 465–478, 2014.

[12] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? designing
and implementing a deployable multipath {TCP},” in 9th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
12), 2012, pp. 399–412.

[13] Q. De Coninck and O. Bonaventure, “Multipath quic: Design and
evaluation,” in Proceedings of the 13th international conference on
emerging networking experiments and technologies, 2017, pp. 160–166.

[14] Y.-s. Lim, Y.-C. Chen, E. M. Nahum, D. Towsley, R. J. Gibbens,
and E. Cecchet, “Design, implementation, and evaluation of energy-
aware multi-path tcp,” in Proceedings of the 11th ACM Conference on
Emerging Networking Experiments and Technologies, 2015, pp. 1–13.

[15] Y. Go, O. C. Kwon, and H. Song, “An energy-efficient http adaptive
video streaming with networking cost constraint over heterogeneous
wireless networks,” IEEE Transactions on Multimedia, vol. 17, no. 9,
pp. 1646–1657, 2015.

[16] A. Ford, C. Raiciu, M. Handley, O. Bonaventure et al., “Tcp extensions
for multipath operation with multiple addresses,” RFC 6824, Tech. Rep.,
2013.

[17] Y.-s. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “Ecf: An
mptcp path scheduler to manage heterogeneous paths,” in Proceedings of
the 13th International Conference on emerging Networking EXperiments
and Technologies, 2017, pp. 147–159.

[18] Y. E. Guo, A. Nikravesh, Z. M. Mao, F. Qian, and S. Sen, “Accelerating
multipath transport through balanced subflow completion,” in Proceed-
ings of the 23rd Annual International Conference on Mobile Computing
and Networking, 2017, pp. 141–153.

[19] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson, “Stream control transmis-
sion protocol,” 2007.

[20] J. Wu, B. Cheng, and M. Wang, “Improving multipath video trans-
mission with raptor codes in heterogeneous wireless networks,” IEEE
Transactions on Multimedia, vol. 20, no. 2, pp. 457–472, 2017.

[21] B. Jonglez, M. Heusse, and B. Gaujal, “Srpt-ecf: challenging round-
robin for stream-aware multipath scheduling,” in Second Workshop on
the Future of Internet Transport (FIT 2020), 2020.

[22] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The quic transport
protocol: Design and internet-scale deployment,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
2017, pp. 183–196.

[23] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices,” in
Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, 2018, pp. 99–114.

[24] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[25] T. P. Baker, “An analysis of edf schedulability on a multiprocessor,”
IEEE transactions on parallel and distributed systems, vol. 16, no. 8,
pp. 760–768, 2005.

[26] M. Bertogna and S. Baruah, “Tests for global edf schedulability analy-
sis,” Journal of systems architecture, vol. 57, no. 5, pp. 487–497, 2011.

[27] Y. Sun, G. Lipari, N. Guan, and W. Yi, “Improving the response
time analysis of global fixed-priority multiprocessor scheduling,” in

2014 IEEE 20th International Conference on Embedded and Real-Time
Computing Systems and Applications. IEEE, 2014, pp. 1–9.

[28] G. Tong and C. Liu, “Supporting soft real-time sporadic task systems on
uniform heterogeneous multiprocessors with no utilization loss,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 9, pp.
2740–2752, 2015.

[29] K. Yang and J. H. Anderson, “On the soft real-time optimality of global
edf on multiprocessors: From identical to uniform heterogeneous,” in
2015 IEEE 21st International Conference on Embedded and Real-Time
Computing Systems and Applications. IEEE, 2015, pp. 1–10.

[30] J.-J. Han, S. Gong, Z. Wang, W. Cai, D. Zhu, and L. T. Yang, “Blocking-
aware partitioned real-time scheduling for uniform heterogeneous mul-
ticore platforms,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 19, no. 1, pp. 1–25, 2020.

[31] A. Dhamdhere, D. D. Clark, A. Gamero-Garrido, M. Luckie, R. K.
Mok, G. Akiwate, K. Gogia, V. Bajpai, A. C. Snoeren, and K. Claffy,
“Inferring persistent interdomain congestion,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
2018, pp. 1–15.

[32] R. Fontugne, C. Pelsser, E. Aben, and R. Bush, “Pinpointing delay
and forwarding anomalies using large-scale traceroute measurements,”
in Proceedings of the 2017 Internet Measurement Conference, 2017, pp.
15–28.

[33] J. Iyengar and M. Thomson, “Quic: A udp-based multiplexed and
secure transport draft-ietf-quic-transport-23,” 2020. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-quic-transport-23

[34] “tc: Linux advanced routing and traffic control.” http://lartc.org/lartc.
html.

[35] C. G. Bampis, Z. Li, I. Katsavounidis, T.-Y. Huang, C. Ekanadham,
and A. C. Bovik, “Towards perceptually optimized end-to-end adaptive
video streaming,” arXiv preprint arXiv:1808.03898, 2018.

[36] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute
path bandwidth traces from 3g networks: analysis and applications,”
in Proceedings of the 4th ACM Multimedia Systems Conference, 2013,
pp. 114–118.


